Tezos economic protocol

Eugen Zălinescu

Nomadic Labs training sessions

11-02-2020

Tezos node

Tezos node = the economic protocol plugged in a generic shell

- economic protocol = Tezos ruleset
 - * what is a valid block and a valid operation
 - how is the ledger updated
 - * one of the rules: rules can be changed
- shell = the network and storage layer
 - * The network layer implements a P2P gossip protocol.
 - * The storage layer stores seen blocks.

What's in the economic protocol?

- Abstractly
 - * Proof-of-stake system
 - * Governance
 - * Transaction layer (incl. Michelson, the smart-contract language)
- Concretely
 - * blocks and operations
 - * the ledger: money, accounts, smart contracts, ...
 - * RPCs, constants, ...

Outline

- ► Liquid Proof-of-Stake and Consensus
- ► Protocol amendment

Liquid Proof-of-stake

- Proof-of-stake system:
 - * Blocks can only be produced by token owners.
 - * Rights to produce blocks are given randomly in proportion to stake.
- ▶ Delegation:
 - * Token owners can delegate their tokens.
 - Delegates cannot spend their delegated tokens.
 - * Delegates can be chosen or revoked at any time.
- ▶ Role of a delegate is to take part in:
 - * the consensus algorithm
 - * the voting process
- ▶ There are currently over 400 delegates.
 - * 81% of monetary mass takes part in consensus
 - * 79% of it is delegated, not owned

Emmy⁺

- ▶ Emmy: state of the art PoS algorithm in 2014
- ► Emmy⁺: improved version adopted in Babylon (Oct.2019)
- ► We'll proceed incrementally:
 - building blocks
 - * simplified version
 - * endorsements
 - * incentives

Baking rights

- For each level, an infinite list of bakers is drawn at random.
 - * implemented through a follow-the-coin procedure
 - track owner of each roll; 1 roll = 8000 tg
 - choose a roll randomly
 - * baker/block priority = index in the list

. . .

Seeds and roll snapshots

Seeds

- ▶ The same baking rights must be computed by every node.
 - * Solution: use a PRNG with a random seed
 - * Seed computation based on a commit & reveal scheme.

Seeds and roll snapshots

Seeds

- ▶ The same baking rights must be computed by every node.
 - * Solution: use a PRNG with a random seed
 - * Seed computation based on a commit & reveal scheme.

Roll snapshots

- ► Token ownership varies over time.
- ► To prevent manipulation:
 - * take regular snapshots of the token distribution
 - * choose snapshot at random.

Simple Emmy⁺

- ► Recall: Tezos node = shell + economic protocol
 - * The shell maintains the main chain: the valid one with the highest score.
 - * The protocol defines the score and the validity rules.
- Simple Emmy⁺ rules:
 - * score = chain length
 - validity = minimal time between blocks:

Simple Emmy⁺: assumptions and properties

- Assumptions
 - * Nodes have access to loosly synchronized clocks.
 - * The network is synchronous: message delays less than 30sec.
- ► These should ensure *probabilistic finality*
 - * in the short run there can be forks:
 - assume the attacker has priority 0 for levels $\ell + 1, \dots, \ell + k$ \rightarrow this happens with probability s^{-k}
 - she proposes the chain $B_{\ell+1} \dots B_{\ell+k}$ to some nodes
 - she proposes the chain $B'_{\ell+1} \dots B'_{\ell+k}$ to some other nodes
 - * in the long run, the honest chain is the faster chain

Endorsements

- ▶ An endorsement is a signature on a block.
 - * included in the block at the next level
- ► Endorsers are selected similarly as bakers.
 - * 32 endorsements slots per level
- ► Role
 - * improve finality
 - reduce selfish baking
- Emmy⁺ validity rule:

$$delay(blk) = 60 + 40 \cdot p + 8 \cdot \max(0, 24 - e)$$

where p is blocks' priority, e number of included endorsements

Rate of forks

The rate of forks as function of fork length

Incentives

- Rational actors model is more realistic.
- ▶ Incentives and slashing are needed:
 - incentives to encourage participation
 - reward baking (16tz) and endorsing (2tz)
 - bakers receive the transaction fees
 - * slashing to prevent double spending and nothing-at-stake problems
 - require a security deposit for baking (512tz) and endorsing (64tz)
 - forfeit it in case of double baking/endorsing
- Reward formulas designed to prevent two types of attacks:
 - * selfish baking
 - deflationary baking

Selfish baking

- ▶ A dishonest baker *D* tries to "steal" blocks to gain more rewards.
- ▶ *D*'s strategy is to withhold his endorsements.
- \triangleright E.g. D has e_1 endorsements. D can steal the block if:

$$\textit{delay}(1,32) < \textit{delay}(0,32-e_1) \Longleftrightarrow e_1 > 12$$

* Stealing feasible, but not necessarily profitable.

Selfish baking profitability

- ▶ It is not profitable to steal one block.
- ▶ The expected profits obtained by stealing two blocks:

stake ratio	profits per year	percentage gain
0.10	0.26	0.000006 %
0.15	6.34	0.000101 %
0.20	43.33	0.000515 %
0.25	129.93	0.001236 %
0.30	207.86	0.001648 %
0.35	196.64	0.001336 %
0.40	115.20	0.000685 %
0.45	42.73	0.000226 %

Deflationary baking

- ▶ Issue: a baker could exclude the endorsements of others
 - * if this makes the others lose more than himself
 - * possible since rewards per included endorsement in Babylon are:
 - 0.1 to baker
 - 2.0 ts to endorser
- ▶ More refined notions of profitability than absolute rewards
 - * Rewards adjusted to inflation
 - Rewards adjusted to stake
- ▶ Mitigation: new formulas for rewards in Carthage
 - * reward per included endorsement, same for baker and endorser: 1.25 tz

Consensus overview

- ▶ The protocol unfolds in cycles of 4096 blocks.
- ▶ The shell disallows any reorganization beyond 5 cycles.

Outline

- ► Liquid Proof-of-Stake and Consensus
- ▶ Protocol amendment

Voting procedure

- ▶ 1 vote = 1 roll; 1 voting period = 8 baking cycles \approx 23 days
- supermajority: $yays \ge 80\%$ (yays + nays)
- ightharpoonup quorum: yays + nays + passes $\geq q$

The ledger state

- ▶ blockchain = cryptographic ledger
 - * blockchain = sequence of operations and their effects
 - * Ledger state: roll owners, accounts, delegates, proposals, ballots, etc.

- ▶ The *context* represents the ledger state.
 - * The context is a persistent, immutable key-value store.
 - * Each block has an associated context, defined by the protocol.
- ▶ The protocol defines how the state is updated. It implements:
 - apply: context -> block -> context option

The protocol component

- ▶ protocol = a set of OCaml modules with two constraints:
 - * implements apply, score, init
 - * it is sandboxed

Protocol activation

- ► Activation steps:
 - * The protocol asks the shell to activate the next protocol.
 - * The shell fetches the protocol.
 - * The shell calls the protocol's *init* function.

Impact of protocol updates

- An update may bring
 - * backward compatible improvements,
 - but also breaking changes.
- In any case:
 - * Protocol developers are interested in explaining the update.
 - * There is the Testing period.
 - * One can influence decisions.

Take away

- ► Economic protocol = the rules of Tezos
- ► Rules can be changed through voting
 - * Explicit governance so that Tezos continuously improves.
- ► Liquid Proof-of-Stake
 - * Token owners can delegate their tokens.
 - * Delegates' role is to produce blocks and to participate in governance.

Useful links

- Generic
 - * Tezos developer docs: tezos.gitlab.io
 - * Code: gitlab.com/tezos/tezos
 - * Nomadic's blog: blog.nomadic-labs.com
 - * Tezos stack exchange: tezos.stackexchange.com
 - * Forums: forum.tezosagora.org and www.reddit.com/r/tezos
- Proof-of-stake and consensus algorithm
 - * tezos.gitlab.io/whitedoc/proof_of_stake.html
 - * blog.nomadic-labs.com/analysis-of-emmy.html
 - * blog.nomadic-labs.com/a-new-reward-formula-for-carthage.html
- Protocol amendment and development
 - * blog.nomadic-labs.com/amendments-at-work-in-tezos.html
 - * blog.nomadic-labs.com/how-to-write-a-tezos-protocol.html
 - * blog.nomadic-labs.com/how-to-write-a-tezos-protocol-part-2.html

Thank you!

Questions?