
Tezos Clients / Wallets

Nomadic Labs

6/12/2018

Nomadic Labs Tezos Clients / Wallets 6/12/2018 1 / 28

First we need a node

To run one node on localhost we issue the following command :

$ alias teztool='docker run -it -v $PWD:/mnt/pwd \
-e MODE=dind -e DIND_PWD=$PWD \
-v /var/run/docker.sock:/var/run/docker.sock \
registry.gitlab.com/nomadic-labs/teztool:latest'

$ teztool babylonnet sandbox --time-between-blocks 10 \
start 18732

This will initialize a node

listening for RPC on port 18732 (rpc port)
The node will initialize and run the babylon protocol
Will start a baker and create a block every 10 seconds

Nomadic Labs Tezos Clients / Wallets 6/12/2018 2 / 28

Tezos Client

We install a snap binary
snap is a container based sw distribution platform

$ wget wget https://gitlab.com/abate/tezos-snapcraft/-/raw\
/master/snaps/tezos_5.1.0_multi.snap?inline=false

$ sudo snap install tezos_5.1.0_multi.snap --dangerous

And now finally we can talk with our node or with any Tezos node out there

$ export PATH=/snap/bin/:$PATH
$ tezos.client man

Nomadic Labs Tezos Clients / Wallets 6/12/2018 3 / 28

Tezos Client (cont)

We can keep track of the level that our local node has reached :
$ tezos.client -A localhost -P 18732 bootstrapped
Notice we connect to the node on localhost:18732

Or check the balance :
$ tezos.client get balance for bob
(We’ll play with this in a moment)

Nomadic Labs Tezos Clients / Wallets 6/12/2018 4 / 28

Baking

Reminder
Operations are included in Blocks
Blocks are created by a baker
We bake using the bootstrap accounts

Nomadic Labs Tezos Clients / Wallets 6/12/2018 5 / 28

First client commands

To familiarize with the command line interface of the node we start exploring
the help page and the tezos manual page.

$ tezos.client --help
[...]
$ tezos.client man

The help page will provide a short list of the global options while the manual
a more comprehensive list of all available (sub-)commands.

Nomadic Labs Tezos Clients / Wallets 6/12/2018 6 / 28

Configure the client

All command line options can be added to the client configuration file. This
is particularly useful to parametrized the client without the need to create
long lines of options. The Man page :

Commands for editing and viewing the client's config file:
config show

Show the config file.
config reset

Reset the config file to the factory defaults.
config update

Update the config based on the current cli values.
config init [-o --output <path>]

Create a config file based on the current CLI values.
-o --output <path>: path at which to create the file

Nomadic Labs Tezos Clients / Wallets 6/12/2018 7 / 28

Tezos Client : Global options

We have already seen a few options used to wrap the tezos client and work
in our sandbox.

To create a new configuration file based on the current options we can use
the command tezos.client config init.

$ tezos.client -A localhost -P 18732 config init

-A : the ip address of the node host (accepts ipv4 and ipv6 addresses)
-P : the RPC port of the node

Nomadic Labs Tezos Clients / Wallets 6/12/2018 8 / 28

Configure the client : Configuration file

The resulting file config will contain :

$ tezos.client config show
{ "base_dir": "~/.tezos-client",

"node_addr": "127.0.0.1",
"node_port": 18732, "tls": false,
"web_port": 8080, "confirmations": 0 }

Subsequently the file can be modified either directly or using the command
tezos.client config update .

Nomadic Labs Tezos Clients / Wallets 6/12/2018 9 / 28

Interacting with the node

$ tezos.client list understood protocols
ProtoALphaAL
ProtoGenesis

Each time the client runs, it queries the node for the protocol
associated to the current chain.
We can force the client to access all command line options for a
specific protocol using -p <protoHash> global parameter

Nomadic Labs Tezos Clients / Wallets 6/12/2018 10 / 28

Wallets

Creating a wallet using the tezos cli is as simple as issuing the command
tezos.client gen keys bob. Looking at the man page we have different
options :

Commands for managing the wallet of cryptographic keys:
gen keys <new> [-f --force]

[-s --sig <ed25519|secp256k1|p256>]
[--encrypted]

Generate a pair of keys.
<new>: new secret_key alias
-f --force: overwrite existing secret_key
-s --sig <ed25519|secp256k1|p256>: custom signature algorithm
--encrypted: Encrypt the key on-disk

Nomadic Labs Tezos Clients / Wallets 6/12/2018 11 / 28

Wallets : Signing schema

A wallet can also use keys associated to different schema. These can be
the default encrypted schema or stored on a ledger or remotely. We can
choose a schema to store the private keys.

Scheme ‘encrypted’: Built-in signer using encrypted keys.
Scheme ‘http’ / ‘https’: Built-in tezos.signer using remote signer
through hardcoded http / https requests.
Scheme ‘ledger’: Built-in signer using Ledger Nano S.
Scheme ‘tcp’: Built-in tezos.signer using remote signer through
hardcoded tcp socket.
Scheme ‘unencrypted’: Built-in signer using raw unencrypted keys.
Scheme ‘unix’: Built-in tezos.signer using remote signer through
hardcoded unix socket.

Nomadic Labs Tezos Clients / Wallets 6/12/2018 12 / 28

Generate a new pair of keys for our friend bob

$ tezos.client gen keys bob --encrypted -s ed25519

Tezos client has support for three ECC signature schemes:

Ed25519 : default for user keys,
secp256k1 (the one used in Bitcoin), and
P-256 (also called secp256r1) used with Hardware Security Modules
(HSMs) mostly.

$ tezos.client show address bob
Hash: tz1M4zWSnYfsVyTLqL3hsHifuwwLWo2J196z
Public Key: edpkuYeUB47rzkkcm5tS8Ctrvp7ERooGZUtbH5eRVJkDQ913R8Dx6x

Nomadic Labs Tezos Clients / Wallets 6/12/2018 13 / 28

Generate a new pair of keys for our friend bob (cont)

$ tezos.client show address bob
Hash: tz1M4zWSnYfsVyTLqL3hsHifuwwLWo2J196z
Public Key: edpkuYeUB47rzkkcm5tS8Ctrvp7ERooGZUtbH5eRVJkDQ913R8Dx6x

The name bob is just a local shortcut to access our account information.
When bob wants to give his account to other he must provide his public key
(from which others can compute the hash).

A tz1... account is called an implicit account

Nomadic Labs Tezos Clients / Wallets 6/12/2018 14 / 28

Managing the wallet of cryptographic keys

The keys are stored in three files in the client data dir

~/.tezos-client/ in our example

public_key_hashs,
public_keys and
secret_keys

The format of these files is json. The secret keys are stored on disk encrypted
with a password except when using a hardware wallet, or using the schema
unencrypted.

Nomadic Labs Tezos Clients / Wallets 6/12/2018 15 / 28

Sandbox Test accounts

The sandbox contains a few keys.
Five bootstrap accounts are added in the sandbox environment
One activator key that is used to activate the alpha protocol
These keys are used for testing and have a lot of tokens to play with.
Do not exist on mainnet/babylonnet

Nomadic Labs Tezos Clients / Wallets 6/12/2018 16 / 28

Sandbox Test accounts (cont)

The client on our machine does not know these accounts we need to add
them.

$ tezos.client list known addresses

tezos.client import secret key bootstrap1 \
unencrypted:edsk3gUfUPyBSfrS9CCgmCiQsTC...

tezos.client import secret key bootstrap2 \
unencrypted:edsk39qAm1fiMjgmPkw1EgQYkMz...

tezos.client import secret key bootstrap3 \
unencrypted:edsk4ArLQgBTLWG5FJmnGnT689V...

tezos.client import secret key bootstrap4 \
unencrypted:edsk2uqQB9AY4FvioK2YMdfmyMr...

tezos.client import secret key bootstrap5 \
unencrypted:edsk4QLrcijEffxV31gGdN2HU7U...

Nomadic Labs Tezos Clients / Wallets 6/12/2018 17 / 28

Sandbox Test accounts (cont)

$ tezos.client list known addresses

bob: tz1M4zWSnYfsVyTLqL3hsHifuwwLWo2J196z (encrypted sk known)
activator: tz1TGu6TN5GSez2... (unencrypted sk known)
bootstrap5: tz1ddb9NMYHZi5... (unencrypted sk known)
bootstrap4: tz1b7tUupMgCNw... (unencrypted sk known)
bootstrap3: tz1faswCTDciRz... (unencrypted sk known)
bootstrap2: tz1gjaF81ZRRvd... (unencrypted sk known)
bootstrap1: tz1KqTpEZ7Yob7... (unencrypted sk known)

Nomadic Labs Tezos Clients / Wallets 6/12/2018 18 / 28

Transactions

One of the basic uses of the tezos.client is to make add transactions to
the blochchain and to check account balances.

First lets check how many tokens are associated to the account bootstrap1

tezos.client get balance for bootstrap1
4000000 tz

Nomadic Labs Tezos Clients / Wallets 6/12/2018 19 / 28

Transactions (cont)

Now we move 1 tz from bootstrap1 to the account of our friend bob

$ tezos.client transfer 1 from bootstrap1 to bob \
--fee 0.05 --burn-cap 0.257

Node is bootstrapped, ready for injecting operations.
Estimated gas: 10100 units (will add 100 for safety)
Estimated storage: 257 bytes added (will add 20 for safety)
Operation successfully injected in the node.
Operation hash: oonCrfYc4eJmAgaj8uQH5hz28p5C4soFnyiz2xo5tG6KyAGvLfv
Waiting for the operation to be included...
[...]

We have to wait for the operation to be added to a new block (i.e. for the
baker to create this new block)

Nomadic Labs Tezos Clients / Wallets 6/12/2018 20 / 28

Transactions options

transfer 1 from bootstrap1 to bob : this is easy
--fee 0.05 : in this transaction we decide to pay a small fee to the
baker that will add out transaction to a block
--burn-cap 0.257 : this is a fixed fee to be payed for each
transaction as anti-spam measure. It is an acknowledgment that 0.257
tz will be burned.

Since this command can be used also to interact with smart contracts, there
are many other options that will be explained later.

Nomadic Labs Tezos Clients / Wallets 6/12/2018 21 / 28

Lets analyze the output of this transaction

The first line tells the hash of the block in which our operation was included.

Operation found in block:
BLQAf2eLjmmcTZWhcqmsmQvKp5KRsA3BPLcm2bV4kHT9sUjx8LY
(pass: 3, offset: 0)

The following is the transaction receipt : We paid a fee to the baker (in this
case this tz1b7t... correspond to bootstrap4

From: tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx
Fee to the baker: tz 0.05
Balance updates:

tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx - tz 0.05
fees(tz1b7tUupMgCNw2cCLpKTkSD1NZzB5TkP2sv,84) ... + tz 0.05

Nomadic Labs Tezos Clients / Wallets 6/12/2018 22 / 28

Lets analyze the output of this transaction (cont)

Transaction:
Amount: tz 1
From: tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx
To: tz1iT4BQ9xQxuNgZYAbzWNxS5miMWgycpJsH
This transaction was successfully applied
Balance updates:

tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx ... - tz 1
tz1iT4BQ9xQxuNgZYAbzWNxS5miMWgycpJsH ... + tz 1
tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx ... - tz 0.257

These fields details the transaction we just executed. Notice that bob paid
the burn fee, but since this is a burn fee, it is not credited to anybody.

Nomadic Labs Tezos Clients / Wallets 6/12/2018 23 / 28

Receipts

A receipt recapitulates the effects of the operation on the blockchain.
Associated to a manager operation, such as a transaction, we have
three important parameters: counter, gas and storage limit.
The counters belongs to each account, they increase at each operation
signed by that account

each operation is unique
each operation is applied once
operations are applied in order
if we emit operation n and n+1, and n gets lost then n+1 cannot be
applied.

Nomadic Labs Tezos Clients / Wallets 6/12/2018 24 / 28

Receipts (cont)

We can check the receipts of all the operations included in a block.

$ tezos.client rpc get \
/chains/main/blocks/head/metadata

Nomadic Labs Tezos Clients / Wallets 6/12/2018 25 / 28

Interacting with the node via RPC

tezos.client get timestamp is a shortcut for

tezos.client rpc get \
/chains/main/blocks/head/header/shell

{ "level": 6124, "proto": 1,
"predecessor": "BKsGPx5f94g4jBRUVXdcn1mRtZkYo6ufdfCi8gTFJYx3g896iDr",
"timestamp": "2019-01-11T11:37:54Z", "validation_pass": 4,
"operations_hash": "LLoa7bxRTKaQN2bLYoitYB6bU2DvLnBAqrVjZcvJ364cTcX2PZYKU",
"fitness": ["00", "00000000000017ec"],
"context": "CoVXsGY6sJdNjNh5UbaB9U7y28mq3cFszKiTJN9UCkM44z95KVsm" }

Nomadic Labs Tezos Clients / Wallets 6/12/2018 26 / 28

RPC lists

The list of all available RPCs for a specific protocol is available as
tezos.client rpc list.
The detailed explanation of each RPC call can be found at Tezos
documentation website
RPCs respect the REST specification.
The verbs used are GET, POST, PUT and DELETE. Some verbs can be
called with an additional payload.

Nomadic Labs Tezos Clients / Wallets 6/12/2018 27 / 28

https://tezos.gitlab.io/mainnet/api/rpc.html
https://tezos.gitlab.io/mainnet/api/rpc.html

Signer

The tezos.signer used by the baker to sign blocks on its behalf.

You can see the signer just as a remote tezos.client w.r.t. keys
creation (same code base and same commands).
It listens on http / https / tcp / unix and accepts request to sign a
block. By default the signer will sign anything and it needs to be
properly configured to be used.
To run the signer :

$ tezos.signer launch socket signer -a your-ip

Nomadic Labs Tezos Clients / Wallets 6/12/2018 28 / 28

